Publishing globe services to enhance your ArcGIS Explorer base map

Sterling Quinn of the ArcGIS Server team contributed the following post.  The ability to publish data as a globe service and to have that data be consumed in a rich client like ArcGIS Explorer is very powerful.
 

As you work on projects with ArcGIS Explorer, you’ll probably want to improve the default image and terrain resolution to create a suitable base map for your area of interest. Globe services are an efficient way to get high-resolution imagery and terrain data to your Explorer maps.

 

If you’ve worked with ArcIMS and ArcGIS Server before, you’re probably familiar with map services, which are two-dimensional. A globe service is three-dimensional, and represents an ArcGlobe document that is being made available to network and Internet clients through an ArcGIS Server system. In fact, the default satellite image you see when you open Explorer is from a globe service hosted by ESRI.  

 

To create a globe service, you need ArcGlobe, some data, and ArcGIS Server. After you create the globe service, you can improve its performance by creating a globe cache. 

 

This example uses two globe services created from publicly-available data:

  1. A globe service displaying 1-foot resolution color orthoimagery of Bountiful, Utah. This imagery was created by the United States Geological Survey (USGS) and is made available through the Utah Automated Geographic Reference Center (AGRC). In this example we’ve added four images to an unmanaged raster catalog so that ArcGlobe treats them as one layer.
  2. A service containing 1/3 arc second (about 10 meter) resolution elevation data obtained from USGS Seamless Data Distribution.
     

  1. A globe service displaying 1-foot resolution color orthoimagery of Bountiful, Utah. This imagery was created by the United States Geological Survey (USGS) and is made available through the Utah Automated Geographic Reference Center (AGRC). In this example we’ve added four images to an unmanaged raster catalog so that ArcGlobe treats them as one layer.
  2. A service containing 1/3 arc second (about 10 meter) resolution elevation data obtained from USGS Seamless Data Distribution.
     
  1. A globe service displaying 1-foot resolution color orthoimagery of Bountiful, Utah. This imagery was created by the United States Geological Survey (USGS) and is made available through the Utah Automated Geographic Reference Center (AGRC). In this example we’ve added four images to an unmanaged raster catalog so that ArcGlobe treats them as one layer.
  2. A service containing 1/3 arc second (about 10 meter) resolution elevation data obtained from USGS Seamless Data Distribution.
     
  1. A globe service displaying 1-foot resolution color orthoimagery of Bountiful, Utah. This imagery was created by the United States Geological Survey (USGS) and is made available through the Utah Automated Geographic Reference Center (AGRC). In this example we’ve added four images to an unmanaged raster catalog so that ArcGlobe treats them as one layer.
  2. A service containing 1/3 arc second (about 10 meter) resolution elevation data obtained from USGS Seamless Data Distribution.
     
  1. A globe service displaying 1-foot resolution color orthoimagery of Bountiful, Utah. This imagery was created by the United States Geological Survey (USGS) and is made available through the Utah Automated Geographic Reference Center (AGRC). In this example we’ve added four images to an unmanaged raster catalog so that ArcGlobe treats them as one layer.
  2. A service containing 1/3 arc second (about 10 meter) resolution elevation data obtained from USGS Seamless Data Distribution.
     
  1. A globe service displaying 1-foot resolution color orthoimagery of Bountiful, Utah. This imagery was created by the United States Geological Survey (USGS) and is made available through the Utah Automated Geographic Reference Center (AGRC). In this example we’ve added four images to an unmanaged raster catalog so that ArcGlobe treats them as one layer.
  2. A service containing 1/3 arc second (about 10 meter) resolution elevation data obtained from USGS Seamless Data Distribution.
     
  1. A globe service displaying 1-foot resolution color orthoimagery of Bountiful, Utah. This imagery was created by the United States Geological Survey (USGS) and is made available through the Utah Automated Geographic Reference Center (AGRC). In this example we’ve added four images to an unmanaged raster catalog so that ArcGlobe treats them as one layer.
  2. A service containing 1/3 arc second (about 10 meter) resolution elevation data obtained from USGS Seamless Data Distribution.
     
  1. A globe service displaying 1-foot resolution color orthoimagery of Bountiful, Utah. This imagery was created by the United States Geological Survey (USGS) and is made available through the Utah Automated Geographic Reference Center (AGRC). In this example we’ve added four images to an unmanaged raster catalog so that ArcGlobe treats them as one layer.
  2. A service containing 1/3 arc second (about 10 meter) resolution elevation data obtained from USGS Seamless Data Distribution.
     
  1. A globe service displaying 1-foot resolution color orthoimagery of Bountiful, Utah. This imagery was created by the United States Geological Survey (USGS) and is made available through the Utah Automated Geographic Reference Center (AGRC). In this example we’ve added four images to an unmanaged raster catalog so that ArcGlobe treats them as one layer.
  2. A service containing 1/3 arc second (about 10 meter) resolution elevation data obtained from USGS Seamless Data Distribution.
     
  1. A globe service displaying 1-foot resolution color orthoimagery of Bountiful, Utah. This imagery was created by the United States Geological Survey (USGS) and is made available through the Utah Automated Geographic Reference Center (AGRC). In this example we’ve added four images to an unmanaged raster catalog so that ArcGlobe treats them as one layer.
  2. A service containing 1/3 arc second (about 10 meter) resolution elevation data obtained from USGS Seamless Data Distribution.
     
  1. A globe service displaying 1-foot resolutio
    n color orthoimagery of Bountiful, Utah. This imagery was created by the United States Geological Survey (USGS) and is made available through the Utah Automated Geographic Reference Center (AGRC). In this example we’ve added four images to an unmanaged raster catalog so that ArcGlobe treats them as one layer.
  2. A service containing 1/3 arc second (about 10 meter) resolution elevation data obtained from USGS Seamless Data Distribution.
     

To create a globe service like the ones we’ve used in this example, you’ll need to do the following:

 

Add your data to an ArcGlobe document. Symbolize it just the way you want the clients of your globe service to see it. Save the globe document to a location that’s visible to all of the machines in your ArcGIS Server system. If you’re creating a globe service that will just provide elevation measurements, remove all other layers from your globe document.

 

Below are some views of the two globe documents that we'll publish as services to enhance our Explorer base map. The second view shows a wireframe because that service will contain elevation only.

 

 

 

 

 

Use ArcGIS Server to publish the globe document as a globe service. You can easily do this in ArcGIS Server Manage, or you can use ArcCatalog. If you need detailed instructions, consult the Globe Services topic in the ArcGIS Server Help: http://webhelp.esri.com/arcgisserver/9.2/dotNet/index.htm#manager/publishing/globe_service.htm

 

Create a globe cache for the service. A globe cache consists of pre-created globe tiles that exist on the server and can be distributed quickly to clients who request them.

 

When you display the globe service’s properties in ArcCatalog, there’s a Caching tab that contains the tools you need to create globe caches. It's not always practical to generate a full cache for all layers, but generating a cache for as many levels of detail as possible can improve performance for the first users that access the service. If you can’t create a full cache, the tiles that you do not create are created on demand as they are visited by clients. The map imagery cache in this example was cached from State (1:312500) to City Block (1:610) Note: Elevation globe services need the full cache built before you can use the service.

  

Once you’ve created the globe document, published the service, and created the cache, you can add the globe service to your Explorer maps. Below is what our image and elevation globe services look like in Explorer.

 

 

 

 

Of course, the power of Explorer lies in its ability to display your own data and perform GIS analysis on it. A high-resolution base map can enhance the effectiveness of your GIS work. Consider your impressions of the two screen captures below that overlay a geologic fault lines shapefile with the Explorer base map. The first image uses the original Explorer base map, while the second image uses the enhanced base map. Not only does our enhanced base map look more realistic, but specific buildings and streets crossed by the faults are more easily identifiable, providing for clearer analysis.

 

 

 

 

 

Try it out for yourself here:  http://serverx.esri.com/ArcGIS/explorer/maps/bountiful.nmf

 

What do you think?

 

 

This entry was posted in Services and tagged , . Bookmark the permalink.

Leave a Reply

One Comment

  1. jschek says:

    Do you plan to add the capability of publishing globe services that contain references to other globe services?